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Abstract 
 
This report examines theoretical and empirical issues related to the statistical power of impact estimates under 
clustered regression discontinuity (RD) designs. The theory is grounded in the causal inference and HLM 
modeling literature, and the empirical work focuses on commonly-used designs in education research to test 
intervention effects on student test scores. The main conclusion is that three to four times larger samples are 
typically required under RD than experimental clustered designs to produce impacts with the same level of 
statistical precision. Thus, the viability of using RD designs for new impact evaluations of educational 
interventions may be limited, and will depend on the point of treatment assignment, the availability of pretests, 
and key research questions.    
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Chapter 1:  Introduction 

Regression discontinuity (RD) designs are increasingly being used by researchers to obtain unbiased 
impact estimates of education-related interventions. These designs are applicable when a continuous 
“scoring” rule is used to assign the intervention to study units (for example, school districts, schools, or 
students). Units with scores below a pre-set cutoff value are assigned to the treatment group and units 
with scores above the cutoff value are assigned to the comparison group, or vice versa. For example, 
Jacob and Lefgren (2004) examined the effects of attending summer school on the outcomes of New York 
City students using the rule that only students with standardized test scores below a cutoff value were 
required to attend summer school. As another example, the design for the National Evaluation of Early 
Reading First (ERF) (Jackson et al. 2007) was based on an independent reviewer scoring process where 
grantees with the highest application scores were awarded ERF grants to improve local preschools. As a 
final example, Ludwig and Miller (2007) exploited the variation in Head Start funding across counties to 
examine the program’s effects on schooling and health. Cook (2008), Imbens and Lemieux (2008), and 
Shadish et al. (2002) provide reviews of the RD design. 
 
Under well-designed RD designs, the treatment assignment rule is fully observed and can be modeled to 
yield unbiased impact estimates. A regression line (or curve) is fit in the outcome-score plane for the 
treatment group and similarly for the comparison group, and differences in the intercepts of these lines is 
the impact estimate. An impact occurs if there is a “discontinuity” in the two regression lines at the cutoff 
score. Because the selection rule is fully known under the RD design, selection bias issues tend to be less 
problematic under the RD design than under other non-experimental designs. 
 
The literature suggests that the RD design might be a suitable alternative to a random assignment (RA) 
design when an experiment is not feasible (Cook 2008). RD designs tend to interfere less with normal 
program operations than RA designs, because treatment assignments for the study population are 
determined by rules developed by program staff or policymakers rather than randomly. Thus, treatments 
can be targeted to those who normally receive them (for evaluations of existing interventions) or to those 
who are deemed likely to benefit most from them (for evaluations of new interventions). Thus, RD 
designs may be easier to “sell” to program staff and participants, which could facilitate efforts to recruit 
study sites. 
 
A major drawback of the RD design relative to the RA design, however, is that much larger sample sizes 
are typically required to achieve impact estimates with the same level of statistical power. If the score 
variable is normally distributed and centered on the cutoff, Goldberger (1972) demonstrated that for a 
nonclustered design, the sample under a RD design must be 2.75 times larger than for a corresponding 
experiment to achieve the same level of statistical precision. Cappelleri et al. (1994) extended this work to 
allow for a wider range of cutoff values. The reduction in precision in the RD design arises due to the 
substantial correlation, by construction, between the treatment status and score variables that are included 
in the regression models; this correlation is not present under the RA design. 
 
This paper extends the work of Goldberger (1972) and Cappelleri et al. (1994) by addressing two main 
research questions: (1) What is the statistical power of RD designs under clustered (group-based) designs 
that are typically used in impact evaluations of education interventions, and (2) When are RD designs in a 
school setting feasible from a cost perspective?  
 
The paper examines commonly-used clustered designs where groups (such as districts, schools, or 
classrooms) are assigned to a research status. Schochet (2008) and Bloom et al. (2005a) demonstrate that 
relatively large numbers of schools must be sampled under clustered RA designs (for example, about 60 if 
pretests are available) to yield impact estimates with adequate levels of precision. Because of additional 
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precision losses under RD designs, statistical power is critical for assessing whether RD designs can be a 
viable alternative to RA designs in the education field. Although there is a large literature on appropriate 
methods for analyzing data under RD designs (see, for example, Imbens and Lemieux 2008), much less 
attention has been paid to examining statistical power under RD designs.  
 
This paper builds on the literature in several other ways.  It examines statistical power under RD designs 
that is anchored in the causal inference and hierarchical linear modeling (HLM) literature. The paper also 
examines statistical power for a wider range of score distributions than have been explored previously, 
and for both sharp RD designs (where all units comply with their treatment assignments) and fuzzy RD 
designs (which allow for noncompliers). In addition, the paper discusses power implications of including 
additional baseline covariates in the regression models, and criteria for determining the appropriate range 
of scores for the study sample. Finally, the paper uses the theoretical formulas and empirically-based 
parameter assumptions to calculate appropriate sample sizes for alternative RD designs. These estimates 
can serve as a guide for future RD designs in the education field.  
 
The empirical analysis focuses on achievement test scores of elementary school and preschool students in 
low-performing school districts. The focus is on test scores due to the accountability provisions of the No 
Child Left Behind Act of 2001, and the ensuing federal emphasis on testing interventions to improve 
reading and mathematics scores of young students.  
 
The rest of this paper is in seven chapters. Chapter 2 discusses how to measure statistical power, and 
Chapter 3 discusses the considered clustered designs. In Chapter 4, assuming that student-level data are 
aggregated to the group level, I discuss the theory underlying the RD and RA designs, variance 
calculations, and RD design effects. In Chapter 5, the analysis is extended to multilevel models where the 
data are analyzed at the student level, and in Chapter 6, I briefly discuss the appropriate range of scores 
for the study sample. Chapter 7 discusses empirical results and Chapter 8 presents conclusions. 
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Chapter 2:  Measuring Statistical Power 

An important part of any evaluation design is the statistical power analysis, which demonstrates how well 
the design of the study will be able to distinguish real impacts from chance differences. To determine 
appropriate sample sizes for impact evaluations, researchers typically calculate minimum detectable 
impacts, which represent the smallest program impacts—average treatment and comparison group 
differences—that can be detected with a high probability. In addition, it is common to standardize 
minimum detectable impacts into effect size units—that is, as a percentage of the standard deviation of the 
outcome measures (also known as Cohen’s d)—to facilitate the comparison of findings across outcomes 
that are measured on different scales (Cohen 1988). Hereafter, minimum detectable impacts in effect size 
units are denoted as “MDEs.”   
 
Mathematically, the MDE formula can be expressed as follows: 

 
(1) ( , , )* ( ) / ,MDE Factor df Var impactα β σ=  
 

where Var(impact) is the variance of the impact estimate, σ is the standard deviation of the outcome 
measure, and Factor(.) is a constant that is a function of the significance level (α), statistical power (β), 
and the number of degrees of freedom.1  Factor(.) becomes larger asα and df decrease and as β increases 
(see Table A.1).  
 
As an example, consider an experimental design with a single treatment and control group and α=.05 and 
β=.80. In this case, for a given sample size and design structure, there is an 80 percent probability that a 
two-sample t-test will yield a statistically significant impact estimate at the 5 percent significance level if 
the true impact were equal to the MDE value in equation (1).  
 
This approach for measuring statistical power differs slightly from the one used in Cappelleri et al. (1994) 
who apply Fisher’s Z transformation to the partial correlation coefficient between the outcome measure 
and treatment status. This difference in metric accounts for the small differences between comparable 
results in this paper and those in Cappelleri et al. (1994). 

 

                                                 
1 Specifically, Factor(.) can be expressed as [T-1(α) + T-1(β)]  for a one-tailed test and  [T- (α/2) + T-1(β)] for a 

two-tailed test, where T-1(.) is the inverse of the student’s t distribution function with df degrees of freedom (see  
Murray 1998 and Bloom 2004 for derivations of these formulas). Equation (1) ignores the estimation error in the 
standard deviation. 
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Chapter 3:  Considered Designs 

The analysis presented below applies to commonly-used clustered designs in the education field where 
one of the following “units” is assigned to a single treatment or control group: school districts, schools, 
classrooms or students. In these designs, students are nested within higher-level units (groups).  
 
Clustering in multilevel designs comes from two potential sources: (1) the assignment of units to a 
research condition, and (2) the random sampling of units from a broader universe of units before or after 
treatment assignments take place. This paper considers the following designs that combine these two 
sources of clustering (that are ordered based on design structure): 

 
I. Students are the unit of assignment and site (school or district) effects are fixed.  In some 

designs, students in purposively-selected schools or districts are randomly assigned directly to 
a research group. For example, in the Impact Evaluation of Charter School Strategies (Gleason 
and Olsen 2004), within each charter school area that volunteered for the study, students 
interested in attending a charter school were randomly assigned through a lottery to either a 
treatment group (who were allowed to enroll in a charter school) or a control group (who were 
not). Under these designs, sites can be treated as fixed strata if the impact results are to be 
viewed as pertaining to the study sites only. To estimate these models, impacts can be 
estimated using a pooled model where the covariates include treatment status and site 
indicators (and perhaps, site-by-treatment interactions); the error structure would include 
random student-level terms only. 

II. Classrooms are the unit of assignment and school effects are fixed.  Classroom-based 
designs are appropriate for interventions that are administered at the classroom level and where 
potential spillover effects of the intervention from treatment to control group classrooms are 
deemed to be small. If schools are purposively selected for the study, school effects could be 
treated as fixed strata. This design was used in the Evaluation of the Effectiveness of 
Educational Technology Interventions (Dynarski and Agodini 2003) where teachers in 
participating volunteer schools were randomly assigned to use a technology or not. In 
estimating these models, random classroom effects would be included in the model error 
structure, and school indicators (and perhaps, school-by-treatment  interactions) would be 
included as model covariates.  

III. Schools are the unit of assignment and no random classroom effects. School-based designs 
are common in the education field, and are often preferred over classroom-based designs 
because of concerns over potential spillover effects. These designs are also necessary for 
testing interventions that can affect the entire school (such as those that aim to change the 
school climate). The exclusion of random classroom effects can be justified if students are 
sampled from all targeted classrooms within the study schools. To estimate these models, 
random school effects would be included in the error structure in the HLM models. A variant 
of this design is if school districts are the unit of assignment and students are selected within 
districts without regard to their schools or classrooms. 

IV. Students are the unit of assignment and site effects are random.  This design is similar to 
Design I, except that sites are considered to be randomly sampled from a broader universe of 
sites, so that study results are to be viewed as generalizing outside the site sample (that is, as 
being externally valid). For estimation, random site and site-by-treatment interaction terms 
would be included in the error structure in the HLM models.  

 



6  Considered Designs 

V. Classrooms are the unit of assignment and school effects are random.  This design is a 
modification to Design II where school effects are treated as random. For estimation, the 
model error structure would include random classroom, school, and school-by-treatment 
interaction terms. 

VI. Schools are the unit of assignment and classroom effects are random. This design is 
appropriate if classrooms within study schools are sampled for the study, or if all classrooms 
are included in the study but are considered to be sampled from a larger classroom population. 
For estimation, the model error structure would include random school and classroom effects. 

These designs are discussed in more detail in Schochet (2008) in the context of RA designs using a 
unified HLM framework. 
 
To simplify the presentation and fix concepts, I first discuss the theory underlying the RD design for 
Design I and Designs II and III where the analysis is conducted using data that are averaged to the unit of 
treatment assignment (classrooms, schools, or districts). These designs are referred to as “aggregated” 
designs. I then discuss “multilevel designs” that include Designs II and III where the analysis is 
conducted using student-level data and Designs IV to VI.   
 
In what follows, the RD design is discussed in the context of the causal inference theory underlying RA 
designs (Neyman 1923, Rubin 1974, Holland 1986, Imbens and Rubin 2007, Schochet 2007). This 
framework is then used to discuss impact and variance estimation methods that are required to calculate 
MDEs. 
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Chapter 4:  Aggregated Designs: RD Design Theory and Design 
Effects 

Theoretical Underpinnings 
 
This paper considers both RD and RA designs where n study units are assigned to either a single 
treatment or control condition (for simplicity, the comparison group under the RD design is hereafter 
referred to as the “control” group). The sample contains np treatment units and n(1-p) control units, where 
p is the sampling rate to the treatment group (0<p<1).  
 
Let YTi be the “potential” outcome for unit i in the treatment condition and YCi be the potential outcome 
for unit i in the control condition. Potential outcomes for the n study units are assumed to be random 
draws from potential treatment and control outcome distributions in the study population. The means of 
these distributions are denoted by μT for potential treatment outcomes and μC for potential control 
outcomes. It is assumed further that Scorei— the variable that is used to assign units to a research status 
under the RD design—is a random draw from the population score distribution with mean μS and 
variance 2

Sσ . To consistently compare statistical power under the RD and RA designs, it is assumed that 
the score variable is also available for the RA design.2 
 
The difference between the two potential outcomes, ( )Ti CiY Y− , is the unit-level treatment effect, and the 
average treatment effect parameter (ATE) under this “superpopulation” causal inference model is 

( ) .T C T CATE E Y Y μ μ= − = − The unit-level treatment effects, and hence, the ATE parameter, cannot be 
calculated directly because for each unit, the potential outcome is observed in either the treatment or 
control condition, but not in both. Formally, if Ti is a treatment status indicator variable that equals 1 for 
treatments and 0 for controls, then the observed outcome for a unit, yi, can be expressed as follows: 

 
(2) (1 ) .i i Ti i Ciy TY T Y= + −    
 

The simple relation in (2) forms the basis for the theory underlying both the RA and RD designs. 
 

In what follows, constant treatment effects are assumed within the population, which implies (1) the same 
variance, 2σ , for the random variables YTi and YCi, and (2) the same covariance, SYσ  (and associated 

correlation, SYρ ) between Scorei and YTi and YCi. These assumptions are consistent with ordinary least 
squares (OLS) methods that are typically used to estimate program impacts in education research, and are 
required to ensure that variances based on OLS methods are justified by the Neyman model of causal 
inference (Freedman 2008; Schochet 2007).    
 
The RA and RD designs differ in the treatment assignment process. Under the RA design, treatment 
status, RA

iT , is assigned randomly to study units, whereas under the RD design, treatment status, RD
iT , is 

                                                 
2 Neyman (1923) considered a finite population RA model where YTi and YCi are assumed to be fixed for the 

study population and where the only source of randomness is treatment status. This paper considers a 
“superpopulation” version of the model (see, for example, Schochet 2007). Note that a finite population version of 
the RD model would need to assume that Scorei is random (for example, due to measurement error).    
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assigned depending on whether Scorei is larger or smaller than a cutoff value K.  This paper considers RD 
designs with the following treatment assignment rule:  
 
  1RD

iT =  if  iScore K≥ and 

  0RD
iT = otherwise. 

 
All results apply, however, if, instead, the treatment were offered to those with scores less than K.  For 
simplicity, the same cutoff value is assumed within and across study sites.  
 
Next, the RA and RD designs are discussed in more detail. The RA design is discussed first because it 
provides the foundation for examining statistical power under the RD design. 
 
The RA Design 
 
Under the RA design, the difference in expected observed outcomes between treatments and controls can 
be calculated using (2) as follows: 
 
 (3) ( | 1) ( | 0) ( | 1) ( | 0) ,RA RA RA RA RA RA

i i i i Ti i Ci i T CE y T E y T E Y T E Y T μ μ= − = = = − = = −  
 
where the last equality holds because of random assignment. Accordingly, ( )RA RA

T Cy y− is an unbiased 
estimator for the ATE parameter.  
 
This simple differences-in-means ATE estimator can also be obtained by rearranging (2) and applying 
OLS methods to the following regression equation: 
 
    0 1(4) ,RA RA

i i iy T uα α= + +  
 
where 0 Cα μ= and 1 ( )T Cα μ μ= − . The error term ( ) (1 )( )RA RA

i i Ti T i Ci Cu T Y T Yμ μ= − + − −  has mean 

zero and variance 2σ and is uncorrelated with RA
iT . 

 
Although not needed to produce unbiased estimates, Scorei can be included as an “irrelevant” variable in 
the regression equation to improve the precision of the impact estimates. The true model is still (4), but 
the estimation model is now:   

 
 0 1 2(5) ,RA RA

i i i iy T Score eα α α= + + +  
 

where ei is an error term (conditional on Scorei) with variance 2
eσ . OLS methods yield consistent 

estimates of 1α in (5) because RA
iT and Scorei are asymptotically uncorrelated due to random assignment 

(Schochet 2007; Yang and Tsiatis 2001). As discussed below, the model in (5) is used to compare the RA 
and RD designs.   
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The RD Design 
 
Figure 4.1 displays graphically the theory underlying the RD design, where hypothetical posttest data 
(averaged to the unit level) are plotted against hypothetical treatment assignment scores (for example, 
pretest scores). The figure also displays fitted regression lines based on the observed data for treatments 
and controls, assuming constant treatment effects. The estimated impact under the RD design is the 
vertical difference between the two regression lines at the hypothetical score cutoff value of 50 (that is, at 
the point of discontinuity). The regression line for potential treatment group outcomes can be obtained by 
extending the regression line for the treatment group over the full score distribution, and similarly for 
potential control group outcomes.  These extended regression lines pertain also to the fitted regression 
lines under the RA design, where units are randomly assigned across the entire score distribution.  
 

Hahn, Todd, and Van der Klaauw (2001) formally prove that if the conditional expectations 
( | )Ti iE Y Score S=  and ( | )Ci iE Y Score S= are continuous in S (as in Figure 4.1), the average causal 

effect of the treatment at the cutoff score K can be identified by comparing average observed outcomes 
immediately to the right and left of K:  

 
 lim ( | ) lim ( | ).RD RD

i i i iS K S K
E y Score S E y Score S

↓ ↑
= − =  

 
Using (2), this average causal effect, ATEK,  can be expressed in terms of potential outcomes as follows:  
  
 (6) ( | ) ( | ).K Ti i Ci iATE E Y Score K E Y Score K= = − =  
 
Equation (6) suggests that impact estimates under the RD design generalize to a population that is 
typically narrower (units with scores right around the cutoff score value) than under the RA design (units 
with scores that cover the full score distribution). In our case, the ATEK parameter equals the ATE 
parameter because of the constant treatment effects assumption, but this equality will not necessarily hold 
in general.  The ATEK  parameter can also be interpreted as a marginal average treatment effect (MATE) 
parameter (Heckman and Vytlacil 2005), which addresses whether a marginal expansion of the program 
is warranted for units with scores just beyond the cutoff value.  
 

Figure 4.1

The RD Method Visually
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The RD design has sometimes been compared to an experimental design for units with scores right 
around the cutoff (Campbell and Stanley 1963). Using this analogy, the ATEK parameter in (6) can be 
estimated using simple differences-in-means procedures, where the sample includes only those units with 
scores right around K. In this case, statistical power considerations are similar for the RD and RA designs.  
 
The RD-RA analogy is not exact, however, because under the RD design, chance alone may not fully 
determine which units are on either side of the cutoff. Furthermore, in many practical applications, there 
are not enough observations around the cutoff to obtain precise impact estimates. Thus, observations 
further from the cutoff are typically included in RD study samples (as in Figure 4.1).  In these 
situations—which are the focus of this paper—treatment effects must be estimated using parametric or 
nonparametric methods where potential outcomes are modeled as a smooth function of the assignment 
scores. Unbiased impact estimates will result only if this outcome-score relationship is modeled correctly. 
Thus, unlike RA designs, RD designs hinge critically on the validity of key modeling assumptions. 
 
For the analysis, it is assumed that the true functional form relationship between potential outcomes and 
scores is linear: 
 
 0 2(7 ) ( | ) ( )Ti i T C ia E Y Score Scoreα μ μ α= + − +  
 
 0 2(7 ) ( | )Ci i ib E Y Score Scoreα α= + . 
 
The same slope coefficient, 2α , applies to both (7a) and (7b) because of the constant treatment effects 
assumption, and is the same coefficient as in (5) for the RA design. A linear specification is adopted, 
because this is a reasonable starting point for an analysis of data from RD designs, and simplifies the 
variance and power calculations. Furthermore, the linear specification is consistent with the local linear 
regression approach (Fan and Gijbels 1996) that has become increasingly popular in the literature for 
analyzing data under RD designs. It is also likely to approximately hold if the score is a pretest. The exact 
outcome-score relationship will depend on the specific design application, but the linearity (and constant 
treatment effects) assumptions will likely provide a lower bound on RD design effects.  
 
Using (2), equations (7a) and (7b) yield the following regression model for the RD design: 

 
  0 1 2(8) ,RD RD

i i i iy T Scoreα α α η= + + +  
 

where iη is a mean zero error term with variance 2
ησ . 3 

 
In Appendix B, it is proved (for the more general multilevel models) that the OLS estimator 1α̂  in (8) 
yields a consistent estimator of the ATEK parameter (and ATE parameter in our case) assuming that the 
model is specified correctly.4  Importantly, this result holds even if Scorei is correlated with iη  (for 

                                                 
3 It is often convenient to include (Scorei-K) in the model rather than Scorei  (especially if score-by-treatment 

interactions are included as covariates) so that α1 always represents the treatment effect at the cutoff score. This 
scaling, however, has no effect on the results presented in this paper, and thus, the simpler specification in (8) is 
used.  

4 Rubin (1977) and Griliches and Ringstad (1971) provide proofs of this result for nonclustered designs in a 
slightly different context (see also  Cappelleri et al. 1991). 



 Aggregated Designs: RD Design Theory and Design Effects 11 

example, due to measurement error in Scorei), because conditional on Scorei, RD
iT and  iη  are 

independent. Thus, although the estimates of 0α and 2α  will be asymptotically biased if Scorei is 
correlated with iη , the estimator for 1α will be asymptotically unbiased. A similar situation occurs under 
the RA design in (5).   

Variance Calculations 

As shown in Appendix B, the asymptotic OLS variance estimator for 1α̂  under the RD model in 
(8) is as follows: 

 
2 22

1 2 2

(1 )
ˆ(9) ( )

(1 )(1 ) (1 )(1 )
RD RDy

RD
TS TS

R
AsyVar

np p np p
η

σσ
α

ρ ρ

−
= =

− − − −
. 

 
In this expression, TSρ is the correlation between RD

iT  and Scorei, 2
RDy

σ is the variance of the posttest 

measure, and 2
RDR is the asymptotic regression 2R  value (which will depend on the strength of the 

outcome-score relationship and the size of the treatment effect).   
 
The asymptotic variance of the impact estimate under the comparable RA design in (5)— with the same 
sample units and the same value for p—is as follows: 
 

 
2 22 2 2

1

(1 ) (1 )ˆ(10) ( )
(1 ) (1 ) (1 )

RA RAye SY
RA

R
AsyVar

np p np p np p

σσ σ ρα
− −

= = =
− − −

,  

 
where 2

RAR is the asymptotic regression 2R value under the RA design.    

There are two key features of these variance formulas: 

1. The term 2[1/(1- )]TSρ  enters the variance expression for the RD design but not for the RA 
design. This occurs because, by construction, treatment status and assignment scores are 
correlated in the RD regression model, but not in the RA model. As discussed further below, 
this correlation tends to be quite large in absolute value, which substantially increases the 
variance estimates under the RD design. Intuitively, the treatment effect in (8) is net of the 
score variable. Thus, the substantial collinearity between the treatment status and score 
variables reduces the information contained in the treatment status variable, which lowers the 
effective sample size for analysis.  

2. The error variances 2
ησ and 2

eσ are identical.  Specific values for the error terms ei and iη  
may differ depending on treatment assignments under the two designs. However, the 
variances of the error terms in (5) and (8) are the same, because the spread of the posttest 
values around the common fitted regression lines are the same for the two designs. This result 
implies that the variances of the posttests are likely to differ for the two designs 
because 2 2

1 22RD RA TSy y
σ σ α α σ= + (assuming no correlation between the score variable and the 

model error terms). Thus,  for example, if impacts are positive and the score and posttest 
variables are positively correlated (as in Figure 4.1), the variance of the posttest values will 
be larger under the RD than RA design. Thus, differences between 2

RDR  and 2
RAR values 

directly compensate for differences in the outcome variances across the two designs.  
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The Design Effect for the RD Design 
 
The design effect for the RD design relative to the RA design—as measured as the ratio of the asymptotic 
variances of the impact estimators in (9) and (10)—is as follows: 
 

 1
2

1

ˆ( ) 1(11)
ˆ( ) (1 )

RD

RA TS

AsyVarRD Design Effect
AsyVar

α
α ρ

= =
−

. 

 
As the size of the squared correlation increases, the design effect increases. The design effect represents 
the increase in the sample size that is required under the RD design to produce impact estimates with the 
same level of statistical precision as the RA design.5   
 
The design effect depends on (1) the distribution of the assignment scores in the study population, (2) the 
location of the cutoff score in this distribution, and (3) the treatment-control split in the sample. 
Importantly, the design effect does not depend on the total sample size, the size of the impact estimate 
( 1α ), or the strength of the outcome-score relationship ( 2α ).  During the planning stages of an 
evaluation, the RD design effect could be approximated if data are available on the likely score 
distribution.   
 
To provide guidance on likely design effects, Table 4.1 displays formulas for calculating TSρ   for the 
following four score distributions that are likely to occur in practice:   

 
1. Normal distribution, which was examined by Goldberger (1972) and Cappelleri et al. 

(1994).    

2. Uniform distribution, where scores are equally prevalent across the score range. 

3. Truncated normal distribution, which is relevant if the entire score distribution is normally 
distributed, but if the sample is limited to units with scores within a specified bandwidth 
around the cutoff score. 

4. Bimodal distribution, which is calculated as a mixture (simple average) of two normal 
distributions with different means (that are equidistant from the full bimodal distribution 
mean) but the same variance. If the two means are sufficiently spread out, this symmetric 
distribution will have two peaks, where each peak is centered around the mean of one 
component normal distribution. This distribution would arise if there are clusters of high and 
low scores, with fewer scores in the middle of the distribution.  

Figure 4.2 displays graphs of each probability distribution function (pdf) as well as key distribution 
parameters. 
 
All formulas in Table 4.1 are parameterized by p—the percentage of the sample that is assigned to the 
treatment group—which is also assumed to equal q—the percentage of the score distribution that lies to 
the right of the cutoff score. The truncated normal and bimodal distributions are also functions of several 
additional parameters (see Table 4.1 and Figure 4.2). Formulas involving normal distributions are 
                                                 

5 The design effect in (11) is slightly different than that developed in Cappelleri et al. (1994) who, as discussed, 
used a different metric for measuring statistical power, and compared all RD designs to a RA design with a 50-50 
treatment-control split. 
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functions of inverse standard normal distributions, which can be calculated using standard statistical 
packages such as SAS.     
 
Table 4.2 displays design effects using the formulas in Table 4.1 for various parameter values. Table 4.3 
displays comparable values under a common design where the treatment and control samples are of equal 
size regardless of the cutoff location. The figures in Table 4.3 were obtained using simulations, because 
the implied subsampling needed to obtain the balanced research samples yields complex score 
distributions, making it difficult to find closed-form solutions for TSρ .6  

 
The key finding is that RD design effects tend to be large. Design effects vary somewhat depending on 
the treatment-control sample split (Table 4.3), but for a given sample allocation, they do not vary much 
across score distributions or cutoff values (Table 4.2). For p=0.50, design effects range from about 2.75 to 
5 (Table 4.3). Design effects do not materially decrease unless the treatment-control sample split is highly 
unbalanced (Table 4.2). It is interesting that design effects tend to be largest for p=0.50, even though for a 
given sample size, this allocation yields the most precise impact estimates under the RA design.  
 
For the truncated normal distribution, there is a complex relationship between the design effect and score 
bandwidth. For instance, if p=q=0.50, the design effect increases as the bandwidth becomes narrower, but 
this does not necessarily hold for other p-q configurations (Tables 4.2 and 4.3). As discussed below, these 
findings have implications for assessing the appropriate bandwidth for selecting the sample. Finally, for 
the bimodal distribution, the design effect tends to increase as the means of the two component normal 
distributions become further apart.     
 
The RD Design Effect for the MDE Calculations 
 
To calculate MDEs, standard errors of the impact estimates must be divided by standard deviations of the 
outcome measures (see equation [1]). What standard deviations should be used in the MDE calculations 
for RD designs?  
 
In principle, impact estimates under RD designs pertain to only those units with scores right around the 
cutoff value. Thus, one option would be to use standard deviations for these units only. These standard 
deviations, however, are likely to be much smaller than the full-population values that are used for RA 
designs. Thus, I do not adopt this approach, because it would likely lead to serious (and somewhat 
artificial) increases in MDEs for RD designs relative to RA designs.    
 
A second option would be to use standard deviations based on the models in (5) and (8). These two 
standard deviations are likely to differ because, as discussed, 2 2

1 22RD RA TSy y
σ σ α α σ≈ + . However, because 

these differences are a function of the unknown parameters 1α  and 2α , they would be difficult to 
compute without further assumptions.  
 
Instead, I assume the same standard deviation for both the RD and RA designs that pertain to the study 
“superpopulation,” even if this population is not delineated precisely. Under this approach, the square root 
of the RD design effect in (11) for the variance calculations applies to the MDE calculations. 
                                                 

6 The simulations were conducted by (1) obtaining 100,000 random draws from the full score distribution, 
(2) defining treatments and controls based on the pertinent cutoff value, (3) subsampling from the larger research 
group to generate a 50-50 sample split; and (4) calculating the empirical correlation coefficient between the treatment 
status and score variables.  I conducted 5,000 simulations and report average simulated correlation coefficients.  
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Table 4.1:  Formulas for TSρ Under RD Designs, by Score Distribution 

Score 
Distribution Formulas for TSρ  Parameter Definitions 
Normal 1( (1 ))

(1 )
p

p p
φ −Φ −

−
 

2

21( )
2

x

x eφ
π

−
= ; 

1(.)−Φ is 
the inverse of the standard 
normal distribution  

   
Uniform 3 (1 )p p−   

   
Truncated 
Normal 2 1 2

2 1 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )(1 )S

p k k k c
k k k cp p

φ φ φ φ
σ

⎡ ⎤⎧ ⎫ ⎧ ⎫− −
−⎨ ⎬ ⎨ ⎬⎢ ⎥Φ −Φ Φ −Φ− ⎩ ⎭ ⎩ ⎭⎣ ⎦

; 

 
1

1 2[ ( ) (1 ) ( )]c p k p k−= Φ Φ + − Φ ; 
 

2
2 2 2 1 1 2 1

2 1 2 1

( ) ( ) ( ) ( )1
( ) ( ) ( ) ( )S

k k k k k k
k k k k

φ φ φ φσ
⎡ ⎤⎧ ⎫ ⎧ ⎫− −
⎢ ⎥= − −⎨ ⎬ ⎨ ⎬Φ −Φ Φ −Φ⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

 

k1 and k2 are the number of 
standard deviations from 
the mean of the full normal 
distribution that the left 
and right truncation points 
fall (see Figure 4.2).  

   
Symmetric 
Bimodal 
Distribution:  
Mixture of  
Two Normal 
Distributions 
With 
Different 
Means but 
the 
Same 
Variances 

[ ]

[ ]
2 2

1 { ( ) (1 ( ))
(1 )

(1 ) ( ) (1 ( )) };

1 4 (1 ) ;
:

1 ( ) (1 ) ( )

S

S

w d l l d l
p p

w d l l d l

w w l
d is obtained by solving
p w d l w d l

φ
σ

φ

σ

+ − −Φ +
−

+ − − + −Φ −

= + −

= − Φ + − − Φ −

 

w is the weight assigned to 
the first normal distribution 
(.5 in our case); l is the 
number of standard 
deviations to the right (left) 
of the mean of the overall 
bimodal distribution where 
the first (second) 
component normal 
distribution is centered 
(see Figure 4.2); d is the 
location of the cutoff score 
in the bimodal distribution. 

   
Notes: The parameter  p is the treatment group sampling rate and equals q—the percentage of the score 

distribution that lies to the right of the cutoff score K. The formulas for TSρ were calculated using 
the following relations: 

 

 
[ ]( | )( )

(1 ) (1 ) (1 )

RD
i i STS i i S

TS
S S S

p E Score Score KE T Score p
p p p p p p

μσ μρ
σ σ σ

≥ −−
= = =

− − −
. 

 
 The moments for truncated normal random variables were obtained using results in Maddala (1983). 
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Note: A zero mean is assumed for the overall bimodal distribution and for the full normal distribution 
underlying the truncated normal distribution. 
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Table 4.2: Design Effects for RD Designs, by Score Distribution, the Location of the Cutoff Score  
  Value, and Other Key Parameters 

 The Treatment Group Sampling Rate (p) Which Equals the Percentage of 
the Score Distribution That Lies Above the Cutoff Score (q) 

Score Distribution 0.50 0.33 or 0.67 0.25 or 0.75 0.10 or 0.90 
     
Normal 2.75 2.46 2.17 1.52 
     
Uniform 4.00 2.97 2.29 1.35 
     
Truncated Normal     

Values of k1 , k2
a     

-1.0, 1.0 3.65 2.91 2.30 1.41 
-0.4, 0.4 3.94 2.99 2.29 1.38 
-0.2, 0.2 3.98 3.00 2.29 1.37 
0.0, 2.0 3.14 3.46 3.00 1.72 
0.6, 1.4 3.73 3.45 2.70 1.50 
0.8, 1.2 3.92 3.26 2.49 1.43 
     

Bimodal: Equal 
Mixture of Two 
Normal Distributions 

    

Value of lb     
2.0 5.37 2.84 2.09 1.35 
1.4 3.75 2.79 2.20 1.42 
0.8 2.94 2.57 2.20 1.50 
0.4 2.77 2.48 2.17 1.52 

 
Note: See the text for formulas and other assumptions underlying the calculations.   

 
aThe parameters k1 and k2 are the number of standard deviations from the mean of the full normal 
distribution that the left and right truncation points fall. 

 
bThe parameter l is the number of standard deviations to the right (left) of the mean of the overall bimodal 
distribution where the first (second) component normal distribution is centered. The calculations assume 
that each normal distribution is weighted equally to create the bimodal mixture distribution (that is, the 
parameter w=0.5). 
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Table 4.3: Design Effects for RD Designs for a 50-50 Split of the Treatment and Control Group 
 Samples 

 Percentage of the Score Distribution That Lies Above the                 
Cutoff Score Value (q) for p=0.50 

Score Distribution 0.50 0.33 or 0.67 0.25 or 0.75 0.10 or 0.90 
     
Normal 2.75 2.79 2.85 3.16 
     
Uniform 4.00 3.70 3.40 2.83 
     
Truncated Normal     

Values of k1 , k2
a     

-1.0, 1.0 3.65 3.50 3.36 2.99 
-0.4, 0.4 3.94 3.65 3.40 2.86 
-0.2, 0.2 3.98 3.67 3.40 2.84 
0.0, 2.0 3.14 3.66 3.90 4.22 
0.6, 1.4 3.73 4.01 3.93 3.44 
0.8, 1.2 3.92 3.90 3.70 3.11 
     

Bimodal: Equal 
Mixture of Two 
Normal Distributions 

    

Value of lb     
2.0 5.37 3.50 3.03 2.65 
1.4 3.75 3.33 3.11 2.93 
0.8 2.94 2.94 2.97 3.14 
0.4 2.77 2.81 2.87 3.16 

 
Note: See the text for formulas and other assumptions underlying the calculations.   

 
aThe parameters k1 and k2 are the number of standard deviations from the mean of the full normal 
distribution that the left and right truncation points fall. 

 
bThe parameter l is the number of standard deviations to the right (left) of the mean of the overall bimodal 
distribution where the first (second) component normal distribution is centered. The calculations assume 
that each normal distribution is weighted equally to create the bimodal mixture distribution (that is, the 
parameter w=0.5). 
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Including Additional Baseline Covariates 
 
The inclusion in the RD models of additional covariates—measured at baseline—can improve the 
precision of the impact estimates. Similar to experimental designs, covariates can increase power by 
explaining some of the variance in the outcome measures across units (that is, by increasing regression R2 
values). The use of covariates (such as pretests) is especially important for improving precision in group-
based designs where statistical power is often a major concern (Bloom et al. 1999; Schochet 2008). 
 
Conditional on the assignment scores, the covariates will be asymptotically uncorrelated with treatment 
status if (1) the outcome-score relationship is modeled correctly, and (2) the covariates are a continuous 
function of the scores (at the cutoff value). Thus, under a well-designed RD study, the inclusion of 
additional covariates in the RD model should have little effect on the impact estimates (and if they do, 
model specification error may be present). The situation is analogous to the use of covariates in 
experimental designs which are asymptotically uncorrelated with treatment status due to random 
assignment.    
 
When additional covariates are included in the RD model, the asymptotic OLS variance estimator for 1α̂  
can be expressed as follows:  
 

 
2 2

_
1 2

(1 )
ˆ(12) ( )
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RD RD Xy
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R
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=

− −
 , 

 
where 2

_RD XR is the asymptotic regression 2R  value when RD
iy is regressed on RD

iT , iScore , and the 
vector of covariates Xi (which could include strata indicator variables). The analogous variance 
expression for the RA design is: 
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Importantly, the numerators in (12) and (13) are the same. Thus, the RD design effect in (11) applies also 
when additional covariates are included in the estimation models. 
 
The Fuzzy RD Design 
 
Thus far, it has been implicitly assumed that all sample units comply with their treatment assignments, 
that is, that all treatments and no controls receive intervention services.  Under this “sharp” RD design, 
the probability of receiving the treatment changes from zero to one at the cutoff value.  
 
The “fuzzy” RD design (Trochim 1984; Hahn et al. 2001) allows for noncompliers— treatment group 
nonparticipants and control group crossovers.  Under this design, the jump in the probability of receiving 
the treatment at the cutoff is less than one. As an example, Van der Klaauw (2002) examined the effects 
of financial aid offers on college attendance, where the “score” variable was based on the applicant’s SAT 
scores and grades, and cutoffs were based on rules used by colleges to award aid. Applicants in higher 
scoring groups were more likely to receive financial aid offers than applicants in lower scoring groups. 
However, some higher scoring applicants did not receive financial aid offers (treatment group 
nonparticipants) and some lower scoring applicants did receive offers (crossovers). Thus, this is a fuzzy 
RD design, because application information (such as essays and extracurricular activities) that was not 
measured in the score also played a role in financial aid award decisions.      



 Aggregated Designs: RD Design Theory and Design Effects 19 

Under the fuzzy RD design, modifications to the estimation methods discussed above are necessary to 
obtain impacts that adjust for noncompliers. This situation is analogous to the distinction between 
intention-to-treat (ITT) and treatment-on-the-treated (TOT) estimators under RA designs (Angrist et al. 
1996).   
 
The modifications can be understood by first classifying units at the cutoff score into four mutually 
exclusive compliance categories: compliers, never-takers, always-takers, and defiers (Angrist et al. 1996). 
Let RTi denote the “potential” service receipt indicator variable in the treatment condition, and RCi denote 
the potential service receipt indicator variable in the control condition. Compliers (CL) are those would 
receive intervention services only if they were assigned to the treatment group (RTi=1 and RCi=0). Never-
takers (N) are those who would never receive treatment services (RTi=0 and RCi=0) and always-takers are 
those would always receive treatment services (RTi=1 and RCi=1). Finally, defiers are those who would 
receive the treatment only in the control condition (RTi=0 and RCi=1).  
 
The ATEK parameter for the pooled sample can be expressed as a weighted average of the ATEK 
parameters for each of the unobserved compliance groups: 

 
_ _ _ _K CL K CL N K N A K A D K DATE p ATE p ATE p ATE p ATE= + + + , 

 
where pg is the percentage of the study population in compliance group g ( 1gp =∑ ), and ATEK_g is the 
associated impact parameter. The ATEK_CL parameter under the fuzzy RD design can then be identified 
under two key assumptions (Hahn et al. 2001; Imbens and Lemieux 2008).  The first is that there are no 
defiers—the monotonicity assumption. This implies that pD=0 and ( )CL T Cp p p= − , where Tp is the 
treatment group participation rate (service receipt rate) and Cp  is the control group crossover rate. The 
second key assumption is that the distributions of potential outcomes are independent of treatment 
assignments for the never-takers and always-takers—the exclusion restriction. This assumption implies 
that never-takers and always-takers receive identical services regardless of the treatment condition to 
which they are assigned. This restriction implies that _ _ 0K N K AATE ATE= = .   
 
Under these two assumptions, the following impact parameter can be identified under the fuzzy RD 
design: 
 

 _
( | ) ( | )(14)

( 1| ) ( 1| ) ( )
Ti i Ci i K

K CL
Ti i Ci i T C

E Y Score K E Y Score K ATEATE
P R Score K P R Score K p p

= − =
= =

= = − = = −
. 

 
This parameter represents the average causal effect of the treatment for compliers at the cutoff score.  
 
A consistent estimator for the _K CLATE parameter can be obtained by dividing consistent estimators for 
the numerator and denominator in (14), which can both be obtained using RD regression methods. The 
ATEK parameter can be estimated using equation (8). An estimator for ( )T Cp p−  can be obtained as the 

parameter estimate on RD
iT from a regression of observed treatment receipt status, ri, on RD

iT and a smooth 
function of Scorei. 
 
This _K CLATE  ratio estimator can also be obtained using instrumental variables (IV) techniques (Hahn et 
al. 2001) that are similar to the methods developed by Bloom (1984) and Angrist et al.(1996) to adjust for 
noncompliers in RA evaluations. For example, consider the following two-stage-least-squares procedure: 
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(1) Calculate predicted values, îr , from the RD regression model discussed above for estimating 

( )T Cp p− ; (2) Estimate equation (8) using îr  in place of RD
iT . The second-stage coefficient estimate on 

îr  yields the _K CLATE  estimator. 
 
In principle, the variance of this _K CLATE estimator must account for the estimation error in both the 

ATEK and ( )T Cp p−  parameters.7 As an approximation, however, I treat ( )T Cp p− as fixed and use 
equation (12) to obtain the following asymptotic variance expression for the _K CLATE estimator:   
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The corresponding variance expression for the TOT estimator under the RA design is:  
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where (qT - qC) represents the treatment-control difference in service receipt rates for the full study 
population (not just those at the cutoff).  
 
Consequently, the design effect for the fuzzy RD design is: 
  

 
2
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This design effect reduces to (11) if service receipt rates for units right around the cutoff mimic service 
receipt rates for units across the full score distribution.  
 

                                                 
7 Using a Taylor series expansion, the variance of the ratio estimator is:  

 
2

1 1 1 1
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+ − , where d = (pT-pC) and 1α  is the ATEK parameter. 
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Chapter 5:  Multilevel RD Designs 

In this section, results from above are generalized to multilevel designs where data are analyzed at the 
student rather than group level. Designs II and III are discussed first, followed by a discussion of Designs 
IV to VI.  
  
Designs II and III   
 
The causal inference theory discussed above can be extended to the two-level design where students are 
nested within units that are assigned to a research status. As before, let YTi and YCi be unit-level potential 
outcomes and Scorei be unit-level assignment scores, whose joint distributions are defined as in Chapter 
4.8  The sample contains np treatment units and n(1-p) control units.  
 
Suppose that m students are sampled from the student superpopulation within each study unit. Let WTij be 
the potential outcome for student j in unit i in the treatment condition and WCij be the corresponding 
potential outcome for the student in the control condition. It is assumed that WTij and WCij are random 
draws from student-level potential treatment and control outcome distributions (that are conditional on 
school-level potential outcomes) with means YTi and YCi, respectively, and common variance 2

θσ .  
 
In what follows, the two-level RA and RD designs are discussed using this causal inference framework. 
 
The RA Design 
 
Under the RA design, the observed outcome for a student, RA

ijw , can be expressed as follows: 
  
(18) (1 )RA RA RA

ij i Tij i Cijw T W T W= + − .   
 
As before, terms in (18) can be rearranged to create the following regression model: 

 

0 1(19) ( )RA RA
ij i i ijw Tα α λ θ= + + + , 

 
where:  

 
1. 0α  and 1α  (the ATE parameter) are defined as above 

2. ( ) (1 )( )RA RA
i i Ti T i Ci CT Y T Yλ μ μ= − + − − is a unit-level error term with mean zero and 

between-unit variance 2
λσ that is uncorrelated with RA

iT  

3. ( ) (1 )( )RA RA
ij i Tij Ti i Cij CiT W Y T W Yθ = − + − −  is a student-level error term with mean zero and 

within-unit variance 2
θσ that is uncorrelated with iλ  and RA

iT   

                                                 
8 For illustration simplicity, common symbols and subscripts are used for each two-level design. This 

convention is followed for the remainder of this section.  
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Importantly, (19) can also be derived using the following two-level hierarchical linear (HLM) model 
(Bryk and Raudenbush 1992): 

 

0 1

1:

2 : ,

RA RA
ij i ij

RA RA
i i i

Level w y

Level y T

θ

α α λ

= +

= + +
 

 
where Level 1 corresponds to students and Level 2 corresponds to units. Inserting the Level 2 equation 
into the Level 1 equation yields (19). Thus, the HLM approach is consistent with the causal inference 
theory presented above. 
 
Suppose that Scorei and other unit- and student-level baseline covariates are included in (19) as 
covariates.  In this case, the asymptotic variance of the two-level (TL) OLS estimator for the ATE 
parameter is as follows: 
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where 2

_ _RA X BR is the asymptotic regression 2R value for the between-variance component and 
2

_ _RA X WR is the asymptotic regression 2R value for the within-variance component. These two R2 values 
could differ depending on the nature of the covariates. 
 
The within-school variance term in (20) is the conventional variance expression for an impact estimate 
under a nonclustered design.  Design effects in a clustered design arise because of the first variance term, 
which represents the correlation of the outcomes of students within the same units (Murray 1998; Donner 
and Klar 2000; Raudenbush 1997). Design effects can be large because the divisor in the between-unit 
term is the number of units rather than the number of students.    
 
It is common to express the variance expression in (20) in terms of the intraclass correlation (ICC) 
(Cochran 1963; Kish 1965), which is defined as the between-unit variance ( 2

λσ ) as a proportion of the 

total variance of the outcome measure ( 2 2 2
λ θσ σ σ= + ): 
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In this formulation, design effects from clustering are small if the mean of the outcome measure does not 
vary much across units (that is, if ICC is small).  In this case, the approach discussed above where 
student-level data are averaged to the unit level will provide consistent, but inefficient impact estimates. 
On the other hand, if the ICC is large (that is, close to 1), then using unit averages or individual student-
level data will produce impact estimates with similar levels of precision. Specific ICC (and R2) values 
will depend on the design.  
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The RD Design 
 
Results from Chapter 4 for the RD design can also be extended to the two-level model. Let the observed 
outcome for a student, RD

ijw , be expressed as follows: 
  
(22) (1 )

(1 ) ( ) (1 )( ) ,

RD RD RD
ij i Tij i Cij

RD RD RD RD
i Ti i Ci i Tij Ti i Cij Ci

w T W T W

T Y T Y T W Y T W Y

= + −

⎡ ⎤= + − + − + − −⎣ ⎦
   

 
where the term inside the brackets is a mean zero residual term. If TiY  and CiY are modeled as a linear 
function of the assignment scores (as in [7a] and [7b]), (22) yields the following two-level RD regression 
model: 
 
 0 1 2(23) ( )RD RD

ij i i i ijw T Scoreα α α τ δ= + + + + , 
 
where iτ is a mean zero unit-level error term with variance 2

τσ , and ijδ is a mean zero student-level error 

term with variance 2
δσ  that is uncorrelated with iτ . The parameter 1α  is the same ATEK  parameter as in 

(8) above.   
  
 As with the RA design, (23) can be obtained using a two-level HLM model: 
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Inserting the Level 2 equation into the Level 1 equation yields (23). 
 
In Appendix B, it is proved that the two-level OLS estimator 1α̂  in (23) yields a consistent estimator of 
the ATEK parameter assuming that the model is specified correctly.  This result holds even if Scorei is 
correlated with iτ . Assuming that additional baseline covariates are included in the model, the asymptotic 
variance of this estimator is as follows (see Appendix B): 
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where 2

_ _RD X BR and 2
_ _RD X WR are between- and within-unit asymptotic regression 2R values, respectively. 

 
The RD Design Effect 
 
A key finding is that the RD design effect remains at 21/(1 )TSρ− under the two-level design. This is 
because the variances inside the brackets in (24) for the RD design equal the variances inside the brackets 
in (20) or (21) for the RA design. Thus, relative to the aggregated model presented above, the use of the 
two-level model for Designs II and III will typically improve the precision of the impact estimates for 
both the RD and RA designs. However, the proportional improvement in precision is the same for each 



24  Multilevel RD Designs 

design, so that the RD design effect does not change. Similar results about the RD design effect apply also 
for the fuzzy RD design and for calculating MDEs.  
 
Designs IV, V, and VI  
 
Theoretical results from the models discussed above carry over directly to Design VI, where schools are 
the unit of assignment and classroom effects are treated as random. Ignoring R2 terms for simplicity, the 
variance expression for the RD impact estimator for this design is: 
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where ICC1 is the intraclass correlation at the school level, ICC2 is the intraclass correlation at the 
classroom level, n is the number of schools, and c is the number of study classrooms per school. This 
expression is a product of the variance expression for the RA design and the RD design effect 

21/(1 )TSρ− . 
 
The situation is somewhat different for Design IV where the unit of assignment is at the student level and 
site effects are treated as random. For this design, it is assumed that treatment effects are constant within 
sites, but not across sites. Instead, site-level treatment effects are assumed to be drawn from a population 
distribution with variance 2

Iσ . 
 
In this case, the design effect 21/(1 )TSρ− affects the student-level variance term, but not the site-level 
variance term. Ignoring R2 terms, the variance expression for the RD impact estimate under Design IV is:  
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Thus, the RD design effect is smaller for Design IV than for the other designs considered above. 
 
A similar situation occurs under Design V, where the variance expression for the RD impact estimate is: 
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Chapter 6:  Selecting the Score Range for the Sample 

A central issue for designing RD studies is assessing the appropriate range of scores for selecting the 
sample (that is, the score bandwidth around the cutoff score). In some evaluations where the sample 
universe is small, a large proportion of study-eligible units (with a wide range of scores) must be included 
in the sample for power reasons, and the estimation of impacts must rely heavily on modeling 
assumptions. This was the case, for example, in the Early Reading First (Jackson et al. 2007) and Reading 
First (Bloom et al. 2005b) evaluations, where the sample universe consisted of a relatively small number 
of grantees who applied for program funds. In other designs, however, there may be many available 
potential study units, but only a subsample can be included in the study for cost reasons.  In these cases, 
how should study units be sampled? 
 
The key advantage of selecting a narrow bandwidth around the cutoff score is that this approach will 
likely yield impact estimates with little bias, because the correct posttest-score relationship can usually be 
specified (and is likely to be approximately linear). Increasing the bandwidth could increase bias if the 
posttest-score relationship varies across different regions of the score distribution, thereby making the 
modeling more difficult. 
 
There are, however, three main disadvantages of using a narrower versus wider bandwidth. First, for a 
given sample size, a narrower bandwidth could yield less precise impact estimates if the outcome-score 
relationship can be correctly modeled using a wider range of scores.  For instance, as discussed above, if 
scores have a truncated normal distribution and p=0.50, the RD design effect tends to decrease as the 
bandwidth increases (although this pattern does not generally hold). Second, in instances where there is a 
limited sample around the cutoff score, widening the bandwidth could yield larger samples, thereby 
increasing statistical precision.        
 
A third disadvantage of using a narrow bandwidth is that the study will have less basis for extrapolating 
impact findings to units with scores further away from the cutoff.  Theoretically, impact findings from the 
RD design generalize only to units with scores near the cutoff value. However, the estimated parametric 
regression lines for the treatment and control groups could be extended to obtain impact estimates for 
units over a wider score range (see Figure 4.1 above). These extrapolations are likely to be more 
defensible if the bandwidth is wider rather than narrower (that is, if the sample contains units that cover a 
broad range of scores). 
 
The choice of the appropriate bandwidth could involve a variance versus bias tradeoff. Methods have 
been developed for assessing the optimal score bandwidth after data have been collected. For example, 
Ludwig and Miller (2007) propose a cross-validation criterion which selects the bandwidth to minimize 
the average squared distance between actual outcome values and predicted values from the fitted 
regression lines. A variant of this approach is to estimate weighted regressions where kernel functions are 
used to assign larger weights to data points closer to the cutoff than to those further from the cutoff 
(Porter 2003).  
 
These same approaches could be used to select the appropriate bandwidth in the design phase of RD 
studies if pertinent secondary data are available for analysis. In these cases, criteria for selecting the 
bandwidth should include the goodness-of-fit statistics based on the cross-validation models, available 
bandwidth sample sizes, and external validity considerations.  
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Chapter 7:  Illustrative Precision Calculations 

In this section, I collate formulas from above and use key design parameter values from the literature to 
obtain illustrative MDE calculations for RD designs in the education field. The focus is on standardized 
test scores of elementary school and preschool students in low-performing schools. MDEs are calculated 
for each design considered above (where I use the multilevel versions of Designs II and III). 
 
Presentation and Assumptions 
 
Tables 7.1 and 7.2 display, under various assumptions and for each of the considered RD designs, the 
total number of schools that are required to achieve precision targets of 0.20, 0.25, and 0.33 of a standard 
deviation, respectively. These are benchmarks that are typically used in impact evaluations of educational 
interventions that balance statistical rigor and study costs (Schochet 2008; Hill et al. 2007).  In Table 7.1, 
it is assumed that the score cutoff is at the center of the score distribution and that the treatment and 
control group samples are balanced. In Table 7.2, it is assumed that the cutoff is at a tertile of the score 
distribution and that there is a 2:1 split of the research samples. Table 7.3 presents comparable figures to 
those in Table 7.1 for the RA design. 
 
Because the amount and quality of baseline data vary across evaluations, the power calculations are 
conducted assuming R2 values of 0, 0.20, 0.50, and 0.70 at each group level.  The R2 value of 0.50 is 
conservative if pretests are available for analysis; the more optimistic 0.70 figure has sometimes been 
found in the literature (Schochet 2008; Bloom et al. 2005a). 
 
To keep the presentation manageable, RD design effects are presented assuming that scores are normally 
distributed. As discussed, for a given treatment-control sample split, the RD design effect does not vary 
much according to the score distribution or location of the cutoff score. Thus, the results that are 
presented are broadly applicable, but could easily be revised using the alternative score distributions or 
parameter values that were discussed above. 

 
The estimates also assume: 

 
• A two-tailed test at 80 percent power and a 5 percent significance level 

• The intervention is being tested in a single grade with an average of 3 classrooms per school 
per grade and an average of 23 students per classroom.  Thus, the sample contains 
69 students per school. 

• 80 percent of students in the sample will provide follow-up (posttest) data, so that posttest 
data are available for about 55 students per school. 

• ICC values of 0.15 at the school and classroom levels (which are consistent with the 
empirical findings in Schochet 2008, Hedges and Hedberg 2007, and Bloom et al. 2005a) 

• An ICC value of 0.15 pertaining to the variance of treatment effects across schools in Designs 
IV and V (Schochet 2008) 

• A sharp RD design rather than a fuzzy RD design (that is, that all units comply with their 
treatment assignments) 
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Table 7.1: Required School Sample Sizes to Detect Target Effect Sizes, for Various RD Designs 
 Assumes a Two-Tailed Test, a Value of .15 for the Intraclass Correlations, the Cutoff Score Is at 

the Center of the Normal Score Distribution and a Balanced Allocation of the Research Groups 

 
Number of Schools Required to Detect an 

Impact in Standard Deviation Units of: 

Unit of Treatment Assignment: Other Fixed or 
Random Effects  .20 .25 .33 

I:  Students Within Sites (Schools or Districts):  Site Effects Fixed 
R2 =  0  39 25 14 
R2 = .2  31 20 12 
R2 = .5  20 13 7 
R2 = .7  12 8 4 

II:  Classrooms Within Schools:  Fixed School Effects 
R2 =  0  141 90 52 
R2 = .2  113 72 41 
R2 = .5  71 45 26 
R2 = .7  42 27 16 

III:  Schools: Within Districts: No Random Classroom Effects 
R2 =  0  357 229 131 
R2 = .2  286 183 105 
R2 = .5  179 114 66 
R2 = .7  107 69 39 

IV: Students Within Schools: Random Site Effects 
R2 =  0  63 40 23 
R2 = .2  50 32 18 
R2 = .5  31 20 12 
R2 = .7  19 12 7 

V:  Classrooms Within Schools: Random School Effects 
R2 =  0  165 105 61 
R2 = .2  132 84 48 
R2 = .5  82 53 30 
R2 = .7  49 32 18 

VI:  Schools Within Districts:  Random Classroom Effects 
R2 =  0  459 294 169 
R2 = .2  367 235 135 
R2 = .5  230 147 84 
R2 = .7  138 88 51 

Note: See the text for formulas and other assumptions underlying the calculations. The figures 
assume that the assignment scores are normally distributed. 
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Table 7.2: Required School Sample Sizes to Detect Target Effect Sizes, for Various RD Designs  
 Assumes a Two-Tailed Test, a Value of .15 for the Intraclass Correlations, the Cutoff Score Is at a 

Tertile of the Normal Score Distribution, and a 2:1 Split of the Research Groups 

 Number of Schools Required to Detect an 
Impact in Standard Deviation Units of: 

Unit of Treatment Assignment: Other Fixed or 
Random Effects 

 
.20 .25 .33 

I:  Students Within Sites (Schools or Districts):  Site Effects Fixed 
R2 =  0  39 25 14 
R2 = .2  31 20 12 
R2 = .5  20 13 7 
R2 = .7  12 8 4 

II:  Classrooms Within Schools:  Fixed School Effects 
R2 =  0  142 91 52 
R2 = .2  114 73 42 
R2 = .5  71 45 26 
R2 = .7  43 27 16 

III:  Schools: Within Districts: No Random Classroom Effects 
R2 =  0  359 230 132 
R2 = .2  288 184 106 
R2 = .5  180 115 66 
R2 = .7  108 69 40 

IV: Students Within Schools: Random Site Effects 
R2 =  0  63 40 23 
R2 = .2  50 32 18 
R2 = .5  31 20 12 
R2 = .7  19 12 7 

V:  Classrooms Within Schools: Random School Effects 
R2 =  0  166 106 61 
R2 = .2  133 85 49 
R2 = .5  83 53 30 
R2 = .7  50 32 18 

VI:  Schools Within Districts:  Random Classroom Effects 
R2 =  0  462 296 170 
R2 = .2  370 237 136 
R2 = .5  231 148 85 
R2 = .7  139 89 51 

Note:  See the text for formulas and other assumptions underlying the calculations.  The figures assume 
that the assignment scores are normally distributed. 
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Table 7.3: Required School Sample Sizes to Detect Target Effect Sizes, for Various Random 
Assignment (RA) Designs 

 Assumes a Two-Tailed Test, a Value of .15 for the Intraclass Correlations, and a Balanced 
Allocation of the Research Groups 

 Number of Schools Required to Detect an 
Impact in Standard Deviation Units of: 

Unit of Treatment Assignment: Other Fixed or 
Random Effects 

 
.20 .25 .33 

I:  Students Within Sites (Schools or Districts):  Site Effects Fixed 
R2 =  0  14 9 5 
R2 = .2  11 7 4 
R2 = .5  7 5 3 
R2 = .7  4 3 2 

II:  Classrooms Within Schools:  Fixed School Effects 
R2 =  0  51 33 19 
R2 = .2  41 26 15 
R2 = .5  26 16 9 
R2 = .7  15 10 6 

III:  Schools: Within Districts: No Random Classroom Effects 
R2 =  0  130 83 48 
R2 = .2  104 66 38 
R2 = .5  65 42 24 
R2 = .7  39 25 14 

IV: Students Within Schools: Random Site Effects 
R2 =  0  42 27 15 
R2 = .2  33 21 12 
R2 = .5  21 13  8 
R2 = .7  12 8 5 

V:  Classrooms Within Schools: Random School Effects 
R2 =  0  79 50 29 
R2 = .2  63 40 23 
R2 = .5  39 25 14 
R2 = .7  24 15 9 

VI:  Schools Within Districts:  Random Classroom Effects 
R2 =  0  167 107 61 
R2 = .2  134 85 49 
R2 = .5  83 53 31 
R2 = .7  50 32 18 

Note: See the text for formulas and other assumptions underlying the calculations. The figures 
assume that the assignment scores are normally distributed. 
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Results 

The key results can be summarized as follows: 
 
• Much larger sample sizes are typically required under RD than RA designs.  Consider the 

most commonly-used design in education-related impact studies where equal numbers of 
schools are assigned to treatment or control status.  Under this design, about 114 total 
schools (57 treatment and 57 control) are required to yield an MDE of 0.25 standard 
deviations, assuming a regression R2 value of 0.5 (Design III; Table 7.1). The corresponding 
figure for the RA design is only 42 total schools (Table 7.3). Similarly, for the classroom-
based Design II, the required number of schools is 45 for the RD design (Table 7.1), 
compared to only 16 for the RA design (Table 7.3).  

• Because of resource constraints, school-based RD designs may only be feasible for 
interventions that are likely to have relatively large effects (about 0.33 standard deviations 
or more). Under Design III, 66 schools (33 treatment and 33 control) are required to achieve 
an MDE of 0.33 standard deviations (assuming an R2 value of 0.50; Table 7.1).  This number 
is comparable to the number of schools that are typically included in large-scale 
experimental impact evaluations funded by the U.S. Department of Education. 

• A 2:1 split of the sample has a small effect on statistical power. The required school sample 
sizes are similar in Tables 7.1 and 7.2. This occurs because as discussed, a balanced sample 
allocation yields larger RD design effects than an unbalanced allocation, but also yields 
smaller variances under the RA design; these two effects are largely offsetting.  

• R2 values matter.  The viability of RD designs in education research hinges critically on the 
availability of detailed baseline data at the aggregate school or individual student level—and 
in particular, pretest data—that can be used as covariates in the regression models to improve 
R2 values. For instance, for the school-based Design III, the number of schools required to 
achieve an MDE of 0.33 standard deviations is 39 if the R2 value is 0.70, 66 if the R2 value is 
0.50, and 131 for a zero R2 value (Table 7.1).   

• RD designs may be most viable for less-clustered designs where classrooms or students are 
the unit of treatment assignment. For example, under the classroom-based Design II, 45 
schools are required to achieve an MDE of 0.25 standard deviations, assuming an R2 value of 
0.50 (Table 7.1). The comparable figure for the classroom-based Design V (with random 
school effects) increases to only 53, because, as discussed, RD design effects are smaller for 
this design than for Design II. For the student-level Design I, the comparable number of 
required schools is 13 schools (Table 7.1). 
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Chapter 8:  Summary and Conclusions 

This paper has examined theoretical and empirical issues related to the statistical power of impact 
estimates under clustered RD designs that could be conducted in a school setting. The theoretical 
framework is grounded in the causal inference and HLM modeling literature, and the empirical work 
focused on group-based designs that are commonly used to test the effects of education interventions on 
student’s standardized test scores.  
 
The main conclusion is that much larger samples are required under RD than RA designs to produce 
rigorous impact estimates. This occurs because the large RD design effects that have been found 
previously for nonclustered designs carry over to most multilevel clustered designs that are typically used 
in education research. This pattern holds for a wide range of score distributions and score cutoff values.   
 
These findings have important implications for the viability of using RD designs for new evaluations in 
the education field, due to the high cost of recruiting study schools, implementing  interventions, and 
collecting data. Based on resources that are typically devoted to large-scale impact studies by the U.S. 
Department of Education and other funders, the results suggest that RD designs where schools are 
assigned to treatment or control status are likely to be feasible only for interventions that can have 
relatively large effects—0.33 standard deviations or more. RD designs appear to be more viable for less-
clustered designs where classrooms or students are assigned directly to a research condition.  
 
A key finding is that clustered RD designs can yield impact findings with sufficient levels of precision 
only if detailed baseline data—and in particular, pre-intervention measures of the outcomes—are 
collected and used in the regression models to increase R2 values. Furthermore, RD designs will typically 
have sufficient power for detecting impacts at the pooled level only, but not for population subgroups; 
this problem is more severe for RD than RA designs.  
 
In conclusion, although well-designed RD designs can yield unbiased impact estimates, they cannot 
necessarily be viewed as a substitute for experimental designs in the education field. School sample sizes 
typically need to be about three to four times larger under RD than RA designs to achieve impact 
estimates with the same levels of precision. Furthermore, RD designs yield impact findings that typically 
pertain to a narrower population (those with scores near the cutoff) than those from experiments (those 
with all scores), and rely on the validity of critical modeling assumptions that are not required under the 
RA design. The desirability of using RD designs will depend on the point of treatment assignment, the 
availability of pretest data, and key research questions.  
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Appendix A 

 

Table A.1: Values for Factor(.) in Equation (1) of Text, by the Number of Degrees of Freedom, for 
One- and Two-Tailed Tests, and at 80 and 85 Percent Power 

 One-Tailed Test Two-Tailed Test 

Number of Degrees 
of Freedom 

80 Percent 
Power 

85 Percent 
Power 

80 Percent 
Power 85 Percent Power 

2 3.98 4.31 5.36 5.69 
3 3.33 3.61 4.16 4.43 
4 3.07 3.32 3.72 3.97 
5 2.94 3.17 3.49 3.73 
6 2.85 3.08 3.35 3.58 
7 2.79 3.02 3.26 3.49 
8 2.75 2.97 3.20 3.42 
9 2.72 2.93 3.15 3.36 
10 2.69 2.91 3.11 3.32 
11 2.67 2.88 3.08 3.29 
12 2.66 2.87 3.05 3.26 
13 2.64 2.85 3.03 3.24 
14 2.63 2.84 3.01 3.22 
15 2.62 2.83 3.00 3.21 
20 2.59 2.79 2.95 3.15 
30 2.55 2.75 2.90 3.10 
40 2.54 2.74 2.87 3.07 
50 2.53 2.72 2.86 3.06 
60 2.52 2.72 2.85 3.05 
70 2.51 2.71 2.84 3.04 
80 2.51 2.71 2.84 3.04 
90 2.51 2.71 2.83 3.03 
100 2.51 2.70 2.83 3.03 
Infinity 2.49 2.68 2.80 3.00 

 
Note: All figures assume a 5 percent significance level.  
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Appendix B 

Lemma 1.  Let 1α̂ be the OLS estimator for 1α in the two-level model in (23).  If the true functional form 
relationship between potential outcomes and the treatment assignment score is correctly specified in the 
model, then, 1α̂ is a consistent estimator for 1α . Furthermore, as the number of units, n, increases to 
infinity in (23) and for fixed m, 1α̂ converges to a normal distribution with variance: 
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where TSρ is the correlation between RD

iT  and Scorei.  A comparable expression can be obtained for the 

aggregated model in (8) by setting 2 0δσ = and replacing 2
τσ with 2

ησ . 
 
Proof.  Write (23) in terms of centered random variables as follows: 
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Standard asymptotic arguments can be used to prove that as n approaches infinity, 
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In this expression,  
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where Tτσ is the covariance between RD
iT  and iτ , and Sτσ  is the covariance between Scorei and iτ . Note 

that the covariance between *
iZ  and *

ijδ  is zero because RD
iT  and Scorei do not vary within schools. Thus, 

after some algebra, it can be seen that as n approaches infinity, 
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The second term on the right-hand-side of (B.2.5) is zero because it is the coefficient estimate on RD

iT  

when iτ  is regressed on RD
iT  and Scorei.  This conditional expectation is zero, because controlling for 

Scorei, there is no variation in treatment status. (Note that this result does not hold if the model is 
specified incorrectly and iτ  contains omitted score variables.) Thus, 1α̂ is asymptotically unbiased. 
 
To obtain the asymptotic distribution of the two-level OLS estimator, we can rewrite (B.2.3) as follows: 
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where op(1) denotes a term that converges in probability to zero. Thus, using (B.2.4), we find after some 
algebra that 
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∑ , a simple application of the central limit theorem (see, 

for example, Rao 1973) can be used to show that 1α̂ is asymptotically normally distributed with mean zero 
and the following variance: 
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The expressions in (B.2.7) and (B.2.1) are equivalent because 2 2 2(1 )TS S TSp pσ σ ρ= − . 
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